direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×C23.C8, C23.C40, C40.104D4, M5(2)⋊3C10, C20.57M4(2), (C2×C4).C40, (C2×C8).3C20, C8.24(C5×D4), (C2×C40).30C4, (C2×C20).11C8, (C22×C4).4C20, C22.4(C2×C40), (C22×C10).1C8, C4.7(C5×M4(2)), (C5×M5(2))⋊11C2, (C22×C20).37C4, C10.41(C22⋊C8), (C2×C40).309C22, C20.159(C22⋊C4), (C10×M4(2)).22C2, (C2×M4(2)).10C10, C2.7(C5×C22⋊C8), (C2×C4).67(C2×C20), (C2×C8).46(C2×C10), (C2×C10).50(C2×C8), C4.29(C5×C22⋊C4), (C2×C20).501(C2×C4), SmallGroup(320,154)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C23.C8
G = < a,b,c,d,e | a5=b2=c2=d2=1, e8=d, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 90 in 58 conjugacy classes, 34 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, C10, C10, C16, C2×C8, M4(2), C22×C4, C20, C20, C2×C10, C2×C10, M5(2), C2×M4(2), C40, C40, C2×C20, C2×C20, C22×C10, C23.C8, C80, C2×C40, C5×M4(2), C22×C20, C5×M5(2), C10×M4(2), C5×C23.C8
Quotients: C1, C2, C4, C22, C5, C8, C2×C4, D4, C10, C22⋊C4, C2×C8, M4(2), C20, C2×C10, C22⋊C8, C40, C2×C20, C5×D4, C23.C8, C5×C22⋊C4, C2×C40, C5×M4(2), C5×C22⋊C8, C5×C23.C8
(1 63 29 37 75)(2 64 30 38 76)(3 49 31 39 77)(4 50 32 40 78)(5 51 17 41 79)(6 52 18 42 80)(7 53 19 43 65)(8 54 20 44 66)(9 55 21 45 67)(10 56 22 46 68)(11 57 23 47 69)(12 58 24 48 70)(13 59 25 33 71)(14 60 26 34 72)(15 61 27 35 73)(16 62 28 36 74)
(2 10)(3 11)(6 14)(7 15)(18 26)(19 27)(22 30)(23 31)(34 42)(35 43)(38 46)(39 47)(49 57)(52 60)(53 61)(56 64)(65 73)(68 76)(69 77)(72 80)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(34 42)(36 44)(38 46)(40 48)(50 58)(52 60)(54 62)(56 64)(66 74)(68 76)(70 78)(72 80)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,63,29,37,75)(2,64,30,38,76)(3,49,31,39,77)(4,50,32,40,78)(5,51,17,41,79)(6,52,18,42,80)(7,53,19,43,65)(8,54,20,44,66)(9,55,21,45,67)(10,56,22,46,68)(11,57,23,47,69)(12,58,24,48,70)(13,59,25,33,71)(14,60,26,34,72)(15,61,27,35,73)(16,62,28,36,74), (2,10)(3,11)(6,14)(7,15)(18,26)(19,27)(22,30)(23,31)(34,42)(35,43)(38,46)(39,47)(49,57)(52,60)(53,61)(56,64)(65,73)(68,76)(69,77)(72,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,63,29,37,75)(2,64,30,38,76)(3,49,31,39,77)(4,50,32,40,78)(5,51,17,41,79)(6,52,18,42,80)(7,53,19,43,65)(8,54,20,44,66)(9,55,21,45,67)(10,56,22,46,68)(11,57,23,47,69)(12,58,24,48,70)(13,59,25,33,71)(14,60,26,34,72)(15,61,27,35,73)(16,62,28,36,74), (2,10)(3,11)(6,14)(7,15)(18,26)(19,27)(22,30)(23,31)(34,42)(35,43)(38,46)(39,47)(49,57)(52,60)(53,61)(56,64)(65,73)(68,76)(69,77)(72,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,63,29,37,75),(2,64,30,38,76),(3,49,31,39,77),(4,50,32,40,78),(5,51,17,41,79),(6,52,18,42,80),(7,53,19,43,65),(8,54,20,44,66),(9,55,21,45,67),(10,56,22,46,68),(11,57,23,47,69),(12,58,24,48,70),(13,59,25,33,71),(14,60,26,34,72),(15,61,27,35,73),(16,62,28,36,74)], [(2,10),(3,11),(6,14),(7,15),(18,26),(19,27),(22,30),(23,31),(34,42),(35,43),(38,46),(39,47),(49,57),(52,60),(53,61),(56,64),(65,73),(68,76),(69,77),(72,80)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(34,42),(36,44),(38,46),(40,48),(50,58),(52,60),(54,62),(56,64),(66,74),(68,76),(70,78),(72,80)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 8E | 8F | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 16A | ··· | 16H | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 20M | 20N | 20O | 20P | 40A | ··· | 40P | 40Q | ··· | 40X | 80A | ··· | 80AF |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | ||||||||||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C8 | C8 | C10 | C10 | C20 | C20 | C40 | C40 | D4 | M4(2) | C5×D4 | C5×M4(2) | C23.C8 | C5×C23.C8 |
kernel | C5×C23.C8 | C5×M5(2) | C10×M4(2) | C2×C40 | C22×C20 | C23.C8 | C2×C20 | C22×C10 | M5(2) | C2×M4(2) | C2×C8 | C22×C4 | C2×C4 | C23 | C40 | C20 | C8 | C4 | C5 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 8 | 8 | 16 | 16 | 2 | 2 | 8 | 8 | 2 | 8 |
Matrix representation of C5×C23.C8 ►in GL6(𝔽241)
98 | 0 | 0 | 0 | 0 | 0 |
0 | 98 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 240 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
240 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
0 | 240 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 177 | 0 | 0 | 0 |
G:=sub<GL(6,GF(241))| [98,0,0,0,0,0,0,98,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,240,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,240],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[0,1,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,177,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C5×C23.C8 in GAP, Magma, Sage, TeX
C_5\times C_2^3.C_8
% in TeX
G:=Group("C5xC2^3.C8");
// GroupNames label
G:=SmallGroup(320,154);
// by ID
G=gap.SmallGroup(320,154);
# by ID
G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,5043,3511,102,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^2=1,e^8=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations